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1. IntrQduction

The use of sub-scale wind tunnel test data to predict the behavior of commercial

transport high lift systems at in-flight Reynolds number is limited by the so, called "inverse

Reynolds number effect." This involves an actual deterioration in the performance of a high

lift device with increasing Reynolds number. A lack of understanding of the relevant flow

field physics associated with numerous complicated viscous flow interactions that

characterize flow over high-lift devices prohibits computational fluid dynamics from

addressing Reynolds number effects. Clearly there is a need for research that has as its

objective the clarification of the fundamental flow field physics associated with viscous

effects in high lift systems. In this investigation, a detailed experimental investigation is

being performed to study the interaction between the slat wake and the boundary layer on

the primary airfoil which is known as a confluent boundary layer. This little-studied aspect

of the multi-element airfoil problem deserves special attention due to its importance in the

lift augmentation process. The goal of this research is to provide an improved

understanding of the flow physics associated with high lift generation.

This progress report will discuss the status of the research being conducted at the

Hessert Center for Aerospace Research at the University of Notre Dame. The research is

sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report

will include a discussion of the models that have been built or that are under construction, a

description of the planned experiments, a description of a flow visualization apparatus that

has been developed for generating colored smoke for confluent boundary layer studies and

some preliminary measurements made using our new 3-component fiber optic LDV

system.

2. Motivation

It is desirable to design simpler high lift systems whose performance exceeds those

that are now in use on commercial aircraft. Achieving this goal demands improved CFD



designtoolsthatcanrealisticallymodelthehigh lift systemflow field overawideReynolds

numberrange.Unfortunately, the flow field physicsassociatedwith modern high lift

systemsis quitecomplexandis dominatedbynumerouscomplexviscousinteractionsthat

representsomeof themostchallengingproblemsin fluid mechanics.It is futile to expectto
useCFD to reliably computethe flow over multi-elementairfoils when,at present,we

sometimescannotevenreliablycomputetheindividual"viscousbuildingblockflows" that

togetherform ahighlift systemflow field.

Evidencesuggeststhat theleadingedgeflow and,in particular,the interactionof the
leadingedgeslatwakewith theprimaryairfoil boundarylayeris akey flow componentin
determining CLmax in high lift systemsand may even be associatedwith "inverse

Reynolds number effects". Such Reynolds number scaling issues pose disturbing

implicationsregardinghowto rationallyextrapolatelow Reynoldsnumberwind tunnel test

data to predict CLmax for flight Reynolds numbers. Indeed, traditional views regarding

the effect of increasing Reynolds number on airfoil boundary layer structure is not

appropriate for the complex viscous interactions that characterize commercial high lift

systems.

A reduction in maximum lift coefficient with Reynolds number could occur by the

following mechanism: It may be expected that for swept wings at all but the lowest

Reynolds numbers the attachment line boundary layer is turbulent. As it circumnavigates

the nose of the airfoil, the flow accelerates and consequently the boundary layer is initially

exposed to a strong favorable pressure gradient. If this negative streamwise pressure

gradient is strong enough as measured by the so-called "relaminarization parameter"

(Launder and Jones, 1969) then relaminarization can occur. The relaminarization process

will greatly reduce the thickness of the boundary layer, and perhaps most importantly,

move the location of onset of confluence with the slat wake downstream. The net effect of

this will be to move the separation location on the primary airfoil aft. It has been shown

experimentally (Garner et al, 1991 and van Dam et al, 1993) that as the Reynolds number

increases, the relaminarization parameter is reduced to such a level that relaminarization

may not take place. Thus, for sufficiently high Reynolds numbers, relaminarization of the

leading edge boundary layer may cease. In such cases, the location of confluence between

the slat wake and turbulent boundary layer on the wing moves forward and gives rise to

rapid mixing and the generation of a very thick viscous layer that can readily separate due to

the adverse pressure gradient aft of the primary airfoil pressure peak. In this manner

CLmax may be limited at high Reynolds numbers due to the combined effects of the failure

of the airfoil boundary layer to relaminarize and its confluence with the slat wake.
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Despiteits perceivedimportancein high lift systemsweknow fairly little aboutthe

flow field physicsof confluentboundarylayers.Themostextensivebodyof experimental

work hasbeenperformedby thegroupat CambridgeUniversity (ZhouandSquire(1983,

1985), Agoropoulos and Squire (1988) and Moghadamand Squire(1989)). These

experimentshaveprimarily examinedtheinteractionbetweenawakegeneratedby eithera

flat plateor symmetricairfoil andtheneighboringwindtunnelwall boundarylayer. These
studiesshowthat the level of turbulencein the wakehasthe strongestinfluenceon the

interaction. In caseswherethereis strongvortex sheddingfrom the wake generating

airfoil, the mixing in the interacting flow is found to be quite strong. The resulting

confluentboundarylayeris muchthickerthantheturbulentboundarylayerwouldbe in the

absenceof theupstreamwake-generatingbody.

It is interestingto noteherethat the fluid dynamicsof the leadingedge confluent

boundarylayeroccursat comparativelylow Reynoldsnumbers.For example,a Boeing
737-100operatingat a Reynoldsnumber(basedon m.a.c.)of 12X 106will have a slat

Reynoldsnumberof only about1.4X 106. Similarly, the Reynoldsnumberassociated
with the leadingedgeboundarylayer, Rex = U.x/v, where x is a streamline spatial

coordinate, will also be of comparable magnitude. Thus it appears that the m.a.c.-based

Reynolds number may not be an entirely appropriate correlating parameter in describing the

leading edge confluent boundary layer. This observation suggests that Reynolds number

effects on CLmax that occur in high lift systems can actually involve comparatively low

Reynolds number fluid dynamic phenomena. This indicates that these effects can be

duplicated and studied in fairly low Reynolds number experiments.

3. R¢_¢_lrch Obiective_

A primary objective of the current research effort is to perform benchmark experiments

on the confluent boundary layer formed by the interaction of the slat wake and primary

airfoil boundary layer. These experiments are being performed on a realistic geometry and

under pressure gradient conditions that simulate the flow environment of a commercial

high lift system. From these experiments we will clarify the role of the confluent boundary

layer in determining CLmax as well as discern the fluid dynamic mechanism(s) responsible

for inverse Reynolds number effects. Through novel flow visualization we are isolating

cases of strong and weak slat wake / boundary layer confluence and its effect on integrated

lift. For selected representative cases, detailed fiber optic LDV confluent boundary layer

surveys are being performed. The objectives of these surveys are to (1) provide a better

understanding of the structure of the confluent boundary layer and its effect on lift

production, (2) to investigate the effect of relaminarization upon the onset of confluence

and the structure of the confluent layer and (3) to provide benchmark data that can be used



bycomputationalfluid dynamicistsinorderto refinepredictivecapabilitiesof models.It is

well known thatthe confluentboundarylayer givesrise to counter-gradientmomentum
transferandthuspresentsdifficultiesfor standardturbulencemodels.

The improvementof high lift systemsis essentialfor theUnited Statesto retainits

leadershipandcompetitivenessin thecommercialaviationmarketplace.Thiswill requirea

substantialimprovementin thebasicunderstandingof theflow physicsof high lift systems
and the improvementof high Reynoldsnumberfacilities for developmentwork. We

believethat only throughanunderstandingof thefundamentalflow field physicsof the

confluentboundarylayercanarationaldesignstrategyfor simplifiedhigh lift systemsbe

developed. Suchunderstandingwouldsetthestagefor moremeaningfultestingin high

Reynoldsnumberfacilities. This studyis providinga uniqueopportunityto examinethe

flow physicsof high lift systemsbycontrollingsomeof themajorfactorsthat affecthigh
lift performance. This researchcomplementsthat beingplannedby NASA aswell as

providing detailedflow informationneededto developflow modelsthatwill beessential
for the improvementof computationalmodellingof high lift systems.

4. Research Accomplishments To Date

Funding under NASA grant NAG2-905 commenced during the summer of 1994.

This section describes research accomplishments to date and describes the planned

experimental program. Most of the work to date has involved the design and fabrication of

a required multi-element airfoil model and wind tunnel test section as well as the validation

of a fiber optic LDV system that will be used extensively for the research. At this juncture

all phases of the project are on schedule.

4.1 Multi-element Airfoil Desi_:

The slat and main airfoil section model are both fully two-dimensional. A schematic of

the high-lift system model which has been constructed at the Hessert Center for Aerospace

Research axe shown in Figure 1. Since our experiment is primarily concerned with the

leading edge flow physics and the primary wing confluent boundary layer, the airfoil used

has an elliptical cross section whose contour in the x-y plane is given by,

Y=c X_c(1-X)c

where c is the chord length and '_ is the maximum thickness-to-chord ratio. The slat shape

is typical of those used in commercial high rift systems and possesses a sharp trailing edge.

As seen in Figure 1, the top surface slat contour is the same as that of the main airfoil

leading edge. The slat under-surface contour is generated using a similar elliptical
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geometry.Thelengthof theslatis 0.15c. In orderto reduceblockagecausedprimarily by
themainairfoil section,thechordlengthc andthicknessratio _of thehigh-lift modelwere

optimizedat 15in. and0.15,respectively.TheReynoldsnumberbasedon themainchord
c is approximately106.

Elliptic Airfoil Internal Plenum

_ J _ Blown Hap
...... ._._._._._:._.:._:.:.:.:.:_:::::::::::_::i:i:i:._i:::i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i_:_:_:::i:i::::_:::::::::::::.:_:.:`:.:.:_...:_.._........

i_-_'""" jStatic Pressure Taps

Slat

 ow.w ?/ ...... ;01,c ......
_i_i_!i!i_i_i_i_iiiii?i_iii_i_iii_i_iii_iiiiii_iii_iiiiiiiiiiiiiiiii_iii_!_ii_ii_i_iiiiii_ii_iiiiiiiiii!i?_i!iiiiiii_i_iii_i__ Blown Flap

Overhang

Figure 1. Schematic of 2-D High-lift Model

An aluminum mold was fzrst built using a computer controlled CNC milling machine.

Figure 2a shows a photograph of the aluminum mold being machined. The mold was then

used to pour epoxy airfoil models. Figure 2b is a photograph showing the epoxy model

along with the aluminum mold.

One model contains slots for smoke flow on the slat and airfoil boundary layer; this

model is to be used extensively for smoke flow visualization of the confluence between slat

wake and airfoil boundary layer. The other is to be used for detailed surface pressure

measurements. A total of 64 pressure taps are distributed over the center span of both top

and bottom surfaces of the slat and main airfoil in order that the pressure distribution can be

experimentally obtained. In addition, a total of 24 spanwise pressure taps are installed at

three different chordwise locations on the main airfoil in order to monitor the two-
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(2a)

(2b)

Figures 2a, 2b Aluminum Mold and High-Lift Model Construction



dimensionality of flow over theairfoil. An internal plenumand blown flap is usedin

conjunction with a suitableangleof attack to obtain thecharacteristic"peaky" airfoil

pressuredistribution (Cpmax= -4) which would be found in a typical high-lift system.
Therelativepositionbetweenslatandmainairfoil sectionis completelyadjustablein terms

of bothgapwidth andoverhangparameters.

A completetestmatrix involvingmultipleslatpositions,blown flapsettings,andangle

of attackis quitelarge.In orderto reducethenumberof parametersto amanageablelevel,
flow visualizationwill beusedf'trstin orderto isolatecasesof bothstrongandweakslat

wake/ boundary layer confluence. For these cases detailed surface pressure measurements

will be made. The flow visualization system constructed for this project is next described.

4.2 Design and Construction of Flow Visualization System

Development of the flow visualization techniques described below Will provide an

effective means to visualize the interaction between the wake of the slat and the boundary

layer of the main wing of the high lift system under study. The objective of this design is

to provide a simple, cost effective means to visualize the nature of the interaction between

the wake of the leading edge slat and the boundary layer of the main wing. We propose the

use of color smoke to investigate this complex region of viscous flow. Such a flow

visualization system would involve injecting one color of smoke into the boundary-layer of

the wing and another color at the leading edge of the slat. Analysis of this multi-color flow

visualization would allow the point of confluence to be determined as well as the basic flow

physics to be better understood. By taking advantage of multiple colors of smoke, the wake

of the slat and the boundary layer of the wing could be visualized individually; both before

and after the regions of flow merge to form a confluent boundary layer. In addition, the

use of multiple colors provides the option of using image processing systems to perform

detailed analysis on the location of the flow interaction.

By modifying the technique of using a single smoke wire (see Batill and Mueller

(1981,1982)), a new technique will be used which employs the use of a "smoke screen".

The integrated effect of using numerous discrete smoke wires could be obtained by coating

the surfaces of a small mesh wire screen with a thin layer of mineral oil. The powdered

dye is then applied to the surfaces of the screens. In order to implement this technique, a

new experimental apparatus was built.

A basic schematic of this device appears in Figure 3a. Figure 3b presents a photograph

of the colored smoke generator. Using off-the-shelf galvanized steel pipe and pipe fittings

the basic structure of this device was assembled by simply threading each component

together. The 2" - diameter size of the pipe and tee at the bottom of the figure was required
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Figures 3a, 3b Flow Visualization Apparatus
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for testing combustion products such as standard "smoke-bombs". By using gas ball

valves at the compressed air inlet and at the smoke exit, the device can be pressurized and

the mass flow rate of smoke exiting to the model can be regulated. For safety precautions,

a pressure relief valve opens up a bleed line to maintain the internal pressure below 75 psi.

Furthermore, a "check" valve eliminates the possibility of back flow toward the air

compressor. The use of compressed air at moderate pressures (5-15 psi) allows the smoke

to be forced through the tygon tubing into the model plenum chamber. The steel cap

attached to the 2" - diameter tee opens to allow the insertion of the smoke producing device

into the chamber formed by the 2" tee and pipe. Several tests of the device have been

conducted by simply igniting one or two color smoke bombs inside the 2" tee. The results

of these tests were used to determine the performance of the smoke generator, to determine

safety procedures, and to observe the color quality of the smoke bombs. Since a relatively

small volume of smoke was used, the smoke bombs appeared to provide a similar degree

of performance as the smoke screens. Because of safety requirements, a method to employ

the smoke screen technique using this device is still being developed. Therefore, the

objective of current studies involves selecting a candidate for the heat source used to raise

the temperature of the screens to around 200°F. Owing to the modular construction of this

device, any future design modifications can be applied at low cost with relative ease.

In summary, the smoke screen technique appears to be an effective means to produce

colored smoke. The smoke screen technique involves coating wire mesh screens with a

thin layer of mineral oil and dye, and then heating the screens to around 200"F. Another

possible technique involves the combustion of smoke bombs. Both the smoke bomb and

smoke screen techniques can employ the use of the smoke generator apparatus described

earlier. This apparatus contains the smoke and channels a desired amount into the plenum

chamber of a wind tunnel model. The challenges of this study involve the production of a

sustained, coherent supply of colored smoke, the application of proper lighting and

background techniques in order to visualize the interaction between the slat wake and airfoil

boundary layer.

4.3 Detailed Measurements of Conflu_n_ BgonO_y. Loyer Structure:

For a swept wing at all but the lowest Reynolds numbers the attachment line flow is

turbulent. Since we are performing the experiments with a two-dimensional model there is

obviously no cross flow instability or root chord contamination to produce a turbulent

boundary layer on the main airfoil. It is also not possible to trip the boundary layer near the

leading edge at Reynolds numbers near 106 due to the inherent stability of the boundary

layer in the strong favorable pressure gradient. Creation of a turbulent layer on the main

element is essential if the effects of relaminarizatlon are to be studied.
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In orderto overcomethisdifficulty thefollowing strategywasdeveloped.Basedupon

the resultsof the flow visualizationstudy, selectedcasesinvolving strongand weak
confluencewill beexaminedin detail.Thatis, detailedsurfacepressuredistributionswill

beobtainedalongwith measurementsof theslatwakewidth andairfoil boundarylayer
thicknessvariation. A "viscouspressuregradientparameter"like 8., dP/ dx will be

obtained from these measurements where 8,, is a relevant viscous flow parameter like the

thickness of the boundary layer at the slat trailing edge. This parameter will be matched in

an experiment in a specially designed test section in which the slat wake interacts with a flat

plate boundary layer in the wind tunnel test section as shown in Figure 4. The boundary

layer on the flat plate will be artificially tripped near the plate leading edge.

In order to facilitate the study of wake interactions with boundary layers on the airfoil

surface, an experiment will be carded out in the specially design test section in which the

confluent boundary layers will be created by the interaction of a slat wake and the boundary

layer on a flat plate. The slat used in this experiment will be the same as the slat used with

the high-lift model. It is important to understand that the shape of 2-D bump shown in

Figure 4 is not arbitrary and is dictated by the previous static pressure measurement on the

airfoil model. That is, the pressure gradient over the flat plate caused by the 2-D bump

should be identical to the pressure gradient measured on the high-lift airfoil model. An

inviscid code will transform the variation of static pressure distribution to the

corresponding contour coordinates which can be saved for a later surface machining by a

CNC machine. It stands to reason that if the plate boundary layer develops under identical

pressure gradient conditions as in the multi-element airfoil model, and if we match the slat

wake viscous parameter, then the confluent layers should be identical. The arrangement

shown in Figure 4 has the additional advantages of allowing relaminarization effects to be

studied as well as allowing LDV measurements of much finer spatial resolution than could

possibly be obtained directly from the multi-element model.

U

2-D Bump

k Tunnel Wall

___WW_e Boundary layer

,.... t............. _-7S.-.-7£U_77...___., ,,

I I
Slat Flatplate

Figure 4. Schematic of Test Section Setup with Slat, Flat plate, and 2-D Bump
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Theexperimentdepictedin Figure 4 will be performed in an in-draft tunnel which is shown

in the schematic in Figure 5. The test section of indraft tunnel has a 2 ft. x 2 ft. (0.51m x

0.51m) cross section and is 6 ft. (1.52m) in length. The air flow into the inlet was driven

by a eight-bladed fan connected to a 18.6 kW AC induction motor. The contraction ratio of

tunnel is 22:1 with 12 anti-turbulence screens which leads to a low turbulence intensity

level of approximately 0.05% as determined by a straight hot-wire.

i---Exhaust Fan
9'8" 2_,_ 47 _._1_ 6' _--28___ .... ,,

--_ [i_Rml_- [ |_. 12'6" ..._, |

,-H U
____]_ "r , U IJ | Motor Room i: : : ::::::::: n

()1

k_\\\\\N _.\\\\\\\\\\ ,\\\\\\\\\\\\\\\\\"_ _\\\\\\\\\\\\\\\N.\\\ _ _\\\\\\\\\\\\\\\\\\\\\\\ N\X\X\NN_ N\\_l

22:1 Contraction Diffuser Adjustable
Ratio Louers

12 Anti-turbulencce 2'*2'*6' Interchangeable 18.6 kW Motor and 8
Screens Test Section Bladed fan

Figure 5 Schematic of a Subsonic Wind Tunnel At the University of Notre Dame

The experiment depicted in Figure 4 requires a smooth flat plate with the ability to

maintain attached, flow over the majority of its surface and of sufficient length tO generate a

boundary layer thickness of suitable size. The leading and trailing edges of the plate were

similar to that designed by Sullivan, et al (1994) using the MCARFA program originally

developed at NASA/Langley.

A schematic of the flat plate for the experiment are shown in Figures 6. The total

length of the flat plate is 65 11 inches which corresponds to a Reynolds number of
16

3.48 x 106 at a tunnel speed of 100 ft/s. The leading edge of flat plate consists of a 1 inch

high, quarter ellipse over the upper surface with a 4:1 ratio in the streamwise direction and

a 0.25 inch radius, quarter circle as the lower surface contour. The upper trailing edge is

flat while the lower trailing edge tapered from 1.25 inch to 0 inch over a 6 inch distance.

The flat plate has 44 pressure taps longitudinally distributed along the model centerline on

the top surface for the measurement of streamwise pressure distribution. In order to check
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StaticPressure

Figure6.Schematicof aFlatPlatewith StaticPressureTaps

thenominaltwo-dimensionalityof theturbulentboundarylayerover theflat platesurface,
five streamwiselocations(i.e., at 10,20,30,40, and50inchesfrom theleadingedge)on

the samesideof top surfacehave beenchosento mount a total of 40 spanwisestatic

pressuretapswhich leadstoeightpressuretapsfor eachstreamwiselocation.

4.4Fiber Optic LDV System: Some .Preliminary Flow Diagnostics

The measurement of slat wake interactions with airfoil boundary layers will be

performed non-intrusively with an Aerometrics fiber optic, 3-component Laser Doppler

Velocimeter System equipped with a high speed Aerometerics Doppler Signal Analyzer.

Photographs of the LDV system with computer-controlled traverses and the experimental

wind tunnel facilities are shown in Figures 7a and 7b. The state-of-the-art LDV system

will be used to measure the u'(x,y,t) and v'(x,y,t) digital time-series required to fully

characterize the confluent boundary layer. Wind tunnel seeding is performed as shown in

Figure 7a with an Aerometrics Particle Generator Model APG-100 in conjunction with

Propylene Glycol and water at a 1:2 ratio. This combination provides droplets with

diameters nominally in the 1-4 micron range.

In order to demonstrate that the LDV system is capable of reliably characterizing the

details of the flow field, preliminary flow field measurement of a canoncial flat plate

turbulent boundary layer was f'wst carried out. The tunnel speed was set at 66 ft/s which

corresponds to a Reynolds number of 2.26 x 106 based on the flat plate length. The angle-

of-attack of the flat plate was set at zero incidence throughout the measurement. All

velocity and turbulence intensity profiles were obtained by computer-controlled traverses

normal to the flat plate surface. All data acquisition and subsequent data reduction were

made by an Aerometrics Doppler Signal Analyzer.

Figure 8 compares mean velocity profiles as obtained at x=15, 20, 30, and 40 inch,

respectively. The local mean velocities U(y) are nondimensionalized by the free stream
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(7a)

(7b)

Figures 7a, 7b LDV System, Flow Seeding, and Wind Tunnel Facility
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velocity, U.,,,andthecorrespondinglateralcoordinatesy arenondimensionalizedby the

localboundarylayerthickness,8. It is clearlyseenfromthis figurethatthemeanvelocity

profilesatx=15and20incharestill influencedby thedisturbancescausedbythetrip wire.

At locations30 and40 inchesfrom the leadingedge,bothmeanvelocity profiles show
quiteasimilarprofile,suggestingthatthemeanvelocityhasreachedastateof similarity.

Figure9 presentsthecorrespondingturbulentintensityprof'desatthesamestreamwise

locations. It is clearthatthedisturbancescausedby thetripwire leadto higherturbulence
intensitiesat streamwiselocations15and20 inches. Bothturbulenceintensityprofilesat

locations30and40inchesdoshowself-similarbehaviorasthemeanquantitiesdo.

In orderto furtheranalyzetheturbulencecharacteristicsat streamwiselocationx = 30

inch, it wasdesiredto expresstheresultsin termsof innerwall variables.Forthis reason

it wasnecessaryto obtainthe local skin-friction coefficient.This wasaccomplishedby

plotting mean velocity profiles from LDV measurementsin a semi-log form or as a
"Clauser-Chart".

Figure 10presentsthe meanvelocity profile at x= 30 inch in termsof inner wall

variable scaling. Theprofile exhibits thefamiliar log law of thewall behaviorin good
agreementwithpublisheddata.

Figure 11 comparesLDV measurementsof the longitudinal turbulenceintensity

variationthroughtheboundarylayerasobtainedat x=30 inchwith thepublishedhot-wire
measurementsof Klebanoff(1954).Theagreementis observedto beexcellent.Thesedata

(aswell asothersthat arenot presented)indicatethat theLDV systemmaybe usedto

accuratelystudyconfluentboundarylayerstructurein anon-intrusivemanner.

5. Summary and Plan for Remainder of Year One

At this juncture all phases of the project are on schedule. The required high-lift

models, wind tunnel test section, flow visualization instrumentation and LDV flow

diagnostics have been developed such that the objectives outlined under NASA grant

NAG2-905 for year one will be met. Activities for the remainder of the year will include:

(1) the use of flow visualization to isolate cases of strong and weak slat wake / airfoil

boundary layer confluence and its effect on integrated lift. (2) the use of the specially

designed test section and fiber optic LDV flow diagnostics to study the detailed structure of

the confluent layer for key cases (3) investigate the effect of relaminarization on confluent

boundary layer structure. A detailed time table for these measurements as well as plans for

year two will be presented and discussed at our meeting at NASA Ames on January 9,

1995.
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